Mini Circuit Breakers, Fuse Blocks, and Electronic Circuit Protection

Topic	Page
1489-M Miniature Circuit Breakers	2
1492-SP Supplementary Protectors	15
1492-D Circuit Breakers	27
188 Regional Circuit Breakers	37
1492-RCD Residual Current Devices	53
1692 Electronic Circuit Protectors	59
1492-MC Circuit Breakers	61
1492-GH/-GS Circuit Breakers	67
1492-FB Fuse Blocks	71

Summary of Changes

This publication contains new and updated information as indicated in the following table.

Topic	Page
1489-M Ambient Temperature Derating Charts	7
1492-SP Ambient Temperature Derating Charts	17
1492-MCG Ground Sensing Rated Voltage and Interrupting Capacity Circuit Breaker Catalog Numbers	61

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

Resource	Description
Control Circuit and Load Protection Selection Guide, publication1492-SG122	Provides product selection and technical information.
Industrial Automation Wiring and Grounding Guidelines, publication 1777-4.1	Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, http://www.ab.com	Provides declarations of conformity, certificates, and other certification details.

You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

1489-M Specifications

Electrical Ratings						
Poles					1,2,3	
Tripping characteristics					C, D	
Rated current (I_{n})					0.5...63 A	
Rated frequency [f]					$50 / 60 \mathrm{~Hz}$	
Rated insulation voltage U_{i} per IEC/EN 60664-1					250V AC (phase to ground) 440V AC (phase to phase)	
Overvoltage category					III	
Pollution degree					3	
Data per UL/CSA						
Rated voltage	AC ${ }^{\text {1-pole }}$		C Curve	0.5... 40 A	277 V AC	
			$50 . .63 \mathrm{~A}$	240 VAC		
			D Curve	0.5...35 A	277 V AC	
			$40 . .63 \mathrm{~A}$	240 VAC		
		2-, 3-pole		C Curve	0.5... 40 A	480Y/277V AC
			50...63 A		240 V AC	
			D Curve	0.5...35 A	480Y/277V AC	
				40...63 A	240 VAC	
	DC	1-pole			48 V DC	
		2-pole			96 V DC (2-pole in series)	
Rated interrupting capacity per UL 489					10 kA	
Reference temperature for tripping characteristics					$40^{\circ} \mathrm{C}$	
Electrical endurance					$\begin{gathered} \text { 6,000 operations } \\ \text { (AC and DC); } \\ 1 \text { cycle (1s - ON, 9s - OFF) } \end{gathered}$	
Data per IEC/EN 60947-2						
Rated operational voltage (U_{e})		1-pole			230 VAC	
		2-, 3-pole			400 V AC	
Highest supply or utilization voltage $\left(U_{\max }\right)$		AC		-pole	253/440V AC	
			3-pole	440 VaC		
		DC \star		-pole	48 V D	
			-pole	96 V DC		
Min. operating voltage					12 V AC, 12 V DC	
Rated ultimate short-circuit breaking capacity ($I_{\text {cu }}$)					15 kA	
Rated service short-circuit breaking capacity ($I_{\text {(SS }}$)					$\begin{gathered} \leq 40 \mathrm{~A}: 11.25 \mathrm{kA} \\ >40 \mathrm{~A}: 7.5 \mathrm{kA} \end{gathered}$	
Rated impulse withstand voltage Uimp. (1.2/50 μ s)					4 kV (test voltage 6.2 kV at sea level, 5 kV at $2,000 \mathrm{~m}$)	
Dielectric test voltage					2 kV ($50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}$.	
Reference temperature for tripping characteristics					$30^{\circ} \mathrm{C}$	
$\begin{aligned} & \text { Electrical endurance } \\ & 1 \text { cycle }\left(2 \mathrm{~s}-0 \mathrm{~N}, 13 \mathrm{~s}-0 \mathrm{OFF}, I_{\mathrm{n}} \leq 32 \mathrm{~A}\right) \text {, } \\ & 1 \text { cycle }\left(2 \mathrm{~s}-0 \mathrm{~N}, 28 \mathrm{~s}-0 \mathrm{OF}, I_{\mathrm{n}}>32 \mathrm{~A}\right) \end{aligned}$					$\begin{gathered} I_{\mathrm{n}}<30 \mathrm{AO:20,000} \mathrm{ops.} \mathrm{(AC)} \\ I_{\mathrm{n}} \geq 30 \mathrm{~A}: 10,000 \text { ops. (AC) } \\ 1,000 \text { ops. (DC) } \end{gathered}$	

\star Self-declared IEC DC ratings.

Mechanical Data	
Housing	Insulation group II, RAL 7035
Indicator window	red ON/green OFF
Protection degree per EN 60529	IP20, IP40 in enclosure with cover
Mechanical endurance	20,000 operations
Shock resistance per IEC/EN 60068-2-27	$25 \mathrm{~g}-2$ shocks - 13 ms
Vibration resistance per IEC/EN 60068-2-6	$\begin{aligned} & 5 \mathrm{~g}-20 \text { cycles at } 5 \ldots .150 \ldots . \mathrm{Hz} \\ & \text { with load } 0.8 \mathrm{ln} \end{aligned}$
Environmental	
Environmental conditions (damp heat) per IEC/EN 60068-2-30	28 cycles with $55^{\circ} \mathrm{C} / 90-96 \%$ and 25ㅇ/ $/ 95-100 \%$
Ambient temperature Δ	$-25 \ldots+55^{\circ} \mathrm{C}$
Storage temperature	$-40 \ldots+70^{\circ} \mathrm{C}$
Installation	
Terminal	Dual terminal
Cross-section of wire - solid, stranded (front/back terminal slot)	$35 / 35 \mathrm{~mm}^{2}$
	18...4/18 ... 10 AWG
Cross-section of wire - flexible (front/back terminal slot)	25/10 mm ${ }^{2}$
Multi-wire rating per UL, CSA	1 wire, 18... 4 AWG
	$2-4$ wires $\ddagger, 18 \ldots 10$ AWG
Cross-section of bus bars (back terminal slot)	$10 \mathrm{~mm}^{2}$
IEC	$2.8 \mathrm{~N} \cdot \mathrm{~m}$
Tightening torque UL/CSA	AWG 18...16: $13.3 \mathrm{in} \cdot \mathrm{b}$, AWG 14...10: $17.7 \mathrm{in} \cdot \mathrm{b}$, AWG 8... $4: 39.8 \mathrm{in} \cdot \mathrm{lb}$
Screwdriver	No. 2 Pozidrive
Mounting	DIN Rail (EN 60715, 35 mm) with fast clip
Mounting position	Any
Supply	Optional
Approximate Dimensions and Weight	
Pole dimensions ($\mathrm{H} \times \mathrm{D} \times \mathrm{W}$)	$\begin{aligned} & 111 \times 69 \times 17.5 \mathrm{~mm} \\ & \left(4.37 \times 2.72 \times .69^{\prime \prime}\right) \end{aligned}$
Pole weight	125 g (4.4 oz.)
Combination with Auxiliary Elements	
Auxiliary contact	Yes
Signal contact	Yes
Shunt trip	Yes

- 35 mm self-declared, not included in IEC/EN approval.
Δ Refer to the ambient temperature derating tables.
\ddagger Wires must be of like size and stranding. Up to two wires per terminal slot.

Power Loss Due to Current

Rated Current [A]	Power Loss Per Pole [W]	Rated Current [A]	Power Loss Per Pole [W]
0.5	1.4	15	2.4
1	1.4	16	2.5
1.6	1.8	20	2.5
2	1.8	25	3.2
3	1.6	30	3.5
4	1.8	32	3.7
5	1.9	35	4.1
6	2.0	40	4.5
7	1.1	50	4.5
8	1.5	60	4.9
10	2.1	63	5.4
13	2.3	-	-

Zero-stack Derating

The installation of several miniature circuit breaker side by side with rated current on all poles requires a correction factor to the rated current (not required if spacers are used).	
No. of Adjacent Devices	Factor
1	1
2,3	0.9
4,5	0.8
≥ 6	0.75

Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

Application Information

Circuit Voltage

The Bulletin 1489-M circuit breakers are rated by voltage class. Applications should not exceed the listed voltage and current range.

Circuit Frequency

The Bulletin 1489-M circuit breakers may be applied to frequencies of 50 Hz and 60 Hz without derating. For applications above 60 Hz , contact Rockwell Automation with specific application information for the derating of the circuit breakers.

Available Short Circuit Current

The Bulletin 1489-M circuit breakers should only be applied in those applications in which the available short-circuit (or fault) current is less than or equal to 10 kA (US/Canada) and 15 kA (IEC).

Tripping Characteristics

The trip curve characteristics are shown on the following pages. The trip bands shown for each breaker represent current tripping limits for a circuit breaker and are within the limits established by UL.

The standard tripping characteristic for Bulletin 1489-M is Type C. Type C has a magnetic trip activated at 5-10 times the rated current of the circuit breaker. The reference temperature for the thermal tripping characteristics is $30^{\circ} \mathrm{C}$. The Type C characteristic will suit most applications.

In rare occurrences when the Type C characteristic does not fully meet the application, Type D magnetic trip characteristic is available, allowing for transients approximately twice as high as the standard Type C.

For a specific current at $30^{\circ} \mathrm{C}$, a circuit breaker will open ("clear the circuit") automatically at some total time that will be within the minimum and maximum time shown on the curves. For example, a one-pole, 15 A, Bulletin 1489-M circuit breaker trips in not less than 1 s and not more than 200 s on a 30 A current. Because the UL standard defines this time spread, users should not specify exact tripping time. The lower current portion of the curves (upper left) depicts the time to trip due to thermal action and reflect overload protection of the wire and connect load. The higher current portion of the curves (lower right) depicts the trip due to magnetic action of the circuit breaker and reflects protection due to short circuit level currents.

Application Considerations

The following is a discussion of application considerations related to North American applications. When applying product to IEC regional requirements, follow IEC practices and guidelines.

The selection of a specific ampere rating for a specific application is dependent on the type of load and duty cycle and is governed by the National Electrical Code (Canadian Electrical Code) and UL/CSA. In general, the codes require that overcurrent protection is at the current supply and at points where wire sizes are reduced. In addition, the codes state that conductors be protected according to their current carrying capacity. There are specific situations that require application consideration, such as motor circuit, and guidelines for the selection for transformer protection.

The Bulletin 1489-M circuit breakers are "non-100\% rated" as defined by UL 489, para 7.1.4.2. As such, the circuit breaker's rating should be loaded to no more than 80% if used with continuous loads.

Line and load may be reversed. The Bulletin 1489-M circuit breaker may be bottom fed.

Branch Circuits

Bulletin 1489-M circuit breakers may be used to protect branch circuits. A branch circuit is the wiring portion of a system extending beyond the final overcurrent device protecting the circuit. Guidelines established in NEC, CEC, UL, and CSA should be used to determine the specific device. For example:

Motor Branch Circuit
Bulletin 1489-M circuit breakers are not horsepower rated because they are able to safely interrupt currents far in excess of the locked rotor value for a selected motor. This ability is recognized in the codes and standards and is also established by the UL and CSA tests described in UL 489 and CSA C22.2 No. 5 standards.

The size of a Bulletin 1489-M circuit breaker should be determined following the guidelines for an Inverse Time Circuit Breaker.

References: NEC 430.51 and UL 489. Also see CEC and appropriate Canadian Standards.

Transformer Protection
Bulletin 1489-M circuit breakers may be used for transformer protection following the guidelines established.

References: NEC 450 and UL 489. Also see CEC and appropriate Canadian Standards.

Heater Load, Lighting, and Other Load Protection
Bulletin 1489-M circuit breakers may be used for protection of heater loads, lighting loads, and other loads following the guidelines established.

References: NEC Article 31 and UL 508A. Also see CEC and appropriate Canadian Standards.

SWD Rating

The Bulletin 1489-M breakers ($0.5 \ldots 20 \mathrm{~A}$) are rated as Switch Duty (SWD) and as such may be applied to switch fluorescent lighting loads up to their current and voltage maximum.

Coordinated Overcurrent Protection

Where an orderly shutdown is required to minimize the hazards to personnel and equipment, a system of coordination based upon the faulted or overloaded circuit is isolated by selective operation of only the overcurrent protective device closest to the overcurrent condition. The user should select devices that meet this requirement. References: NEC 240.12. Also see CEC.

HACR Rating

Bulletin 1489-M Circuit Breakers are rated as Heating, Air Conditioning and Refrigeration circuit breakers as defined by UL 489, paragraph 6.7 and may used in this type of application.

Current Limiting

Bulletin 1489-M Circuit Breakers are rated as current limiting circuit breakers as defined by UL 489, paragraph 8.6.

The Bulletin 1489-M line features the ability to achieve short circuit interruptions far more effectively than conventional breakers. In conventional circuit breakers, the short circuit interruption time required is approximately one or two half cycles of an AC sine wave. When the contacts open, the resulting arc continues to burn until the current level passes through zero. The arc may re-ignite because of the insufficient width of the contact gap. The current that flows until the arc is extinguished produces a heating effect proportional to the F^{2} t value (let-through-energy) of the fault current.

The Bulletin 1489-M device is designed to substantially reduce the amount of let-through-current and the resulting let-through-energy that can damage protected components. The Bulletin $1489-\mathrm{M}$ has the ability to interrupt short circuit current within the first half cycle of the fault. Limiting letthrough current and energy will protect against the harmful effects of overcurrent and is focused primarily on avoiding excessive heat and mechanical damage.

Both of these factors are proportional to the square of the current. Thermal energy is proportional to the square of the RMS value and magnetic forces are proportional to the square of the peak value. The most effective way to provide protection is to substantially limit let-through-energy. This provides the following advantages:

- Far less damage at the location of the short circuit.
- Fast electric separation of a faulty unit from the system, especially power supplies connected in parallel that are switched off when the voltage of the power bus drops below a certain level.
- Far less wear on the miniature circuit breaker itself. This means more safe interruptions.
- Better protection of all components in the short circuit path.
- Far wider range of selective action when used with an upstream protective device. (No nuisance shut downs from feeder line interruptions, causing a blackout in all connected branches.)

Ambient Temperature Derating

The Bulletin 1489-M circuit breakers are rated in RMS amperes at a $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ ambient temperature per UL 489/CSA C22.2 No. 5. This temperature is used as the ambient temperature external to an industrial enclosure. If a circuit breaker is applied in a temperature that exceeds the $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ ambient rating, then the circuit breaker should be derated using the table below. For IEC 60947-2 standard, the products carry an ambient rating of $30^{\circ} \mathrm{C}$. Follow standard IEC application considerations for temperature rating in different ambient temperatures.

Note: Application below $0^{\circ} \mathrm{C}$ is for non-condensing atmosphere. Care should be taken for applications below 0°. These devices are not certified to operate correctly in the presence of ice.

Tripping Characteristics

D Curve

Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1489-AMST1 and 1489-AMST2

1489-AMRS3

1489-AMRA3

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1-Phase Bus Bars

1489 -AMCL1 18

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.
2-Phase Bus Bars

1489-AMCL206
 ($11 \times 0.69^{\prime \prime}=7.62^{\prime \prime}$)

1489 -AMCL212

1489-AMCL218

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.
3-Phase Bus Bars

1489-AMCL318

Bus Bar Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1489-AMCLT35

1489-AMCLT50D

Notes

1492-SP Specifications

Electrical Ratings				Mechanical Data			
Poles			1, 2, 3, 1+N, 3+N	Housing		Insulation group II, RAL 7035	
Tripping characteristics			B, C, D	Indicator window		red ON/green OFF	
Rated current (I_{n})			$0.5 \ldots 63 \mathrm{~A}$	Protection degree per EN 60529		IP20, IP40 in enclosure with cover	
Rated frequency (f)			$50 / 60 \mathrm{~Hz}$	Mechanical endurance		20,000 operations	
Rated insulation voltage U_{i} per IEC/EN 60664-1			250 V AC (phase to ground), 440 V AC (phase to phase)	Shock resistance per IEC/EN 60068-2-27		$25 \mathrm{~g}-2$ shocks - 13 ms	
Overvoltage category			III	Vibration resistance per IEC/EN 60068-2-6		$5 \mathrm{~g}-20$ cycles at $5 . .150 . . .5 \mathrm{~Hz}$ with load 0.81n	
Pollution degree			3				
Data per UL/CSA				Environmental			
Rated voltage	1-pole	AC	277 V AC	Environmental conditions (damp heat) per IEC/EN 60068-2-30		28 cycles with $55^{\circ} \mathrm{C} / 90-96 \%$ and $25^{\circ} \mathrm{C} / 95-100 \%$	
		DC	48 V DC				
	2-pole	AC	480Y/277V AC	Ambient temperature Δ		$-40 . .+70^{\circ} \mathrm{C}$	
		DC	96 V DC	Storage temperature			
	3-pole	AC	$480 \mathrm{Y} / 277 \mathrm{~V}$ AC	Installation			
Rated interrupting capacity per UL 1077			$\leq 32 \mathrm{~A}: 10 \mathrm{kA}(\mathrm{AC}) ;>32 \mathrm{~A}: 5 \mathrm{kA}$	Terminal		Dual terminal	
			(AC); 0.5...63 A: 10 kA (DC)	Cross-section of wire - solid, stranded (front/back terminal slot)		$35 / 35 \mathrm{~mm}^{2}$	
Application			Supplementary protector for general use; application codes: TC1: [1P] OLO27TV AC, [2P,3P] OLO 480Y/27TV AC; SC: 10kA (0.5...32 A), 5kA (35..63 A), U2 480Y/277N AC;FW3			18...4/18...10 AWG	
			Cross-section of wire - flexible (front/back terminal slot)	$25 / 10 \mathrm{~mm}^{2}$			
			Multi-wire rating per UL, CSA		1 wire, 18... 4 AWG		
Reference temperature for tripping characteristics					$40^{\circ} \mathrm{C}$	2-4 wiresł, 18 . . 10 AWG	
Electrical endurance			$\begin{gathered} 6,000 \text { ops (AC), 6,000 ops. (DC) } \\ 1 \text { cycle (} 1 \mathrm{~s}-\mathrm{ON}, 9 \mathrm{~s}-\mathrm{OFF}) \end{gathered}$	Cross-section of bus bars (back terminal slot)		$10 \mathrm{~mm}^{2}$	
Data per IEC/EN 60947-2				Tightening torque	IEC	2.8 N •m	
Rated operational voltage (U_{e})		1-pole, 1+N	230 VAC			AWG 18...16: 13.3 in n l .	
		2-pole, 3-pole, $3+N$	400 V AC		UL/CSA	AWG 14...10: $17.7 \mathrm{in} \cdot \mathrm{b}$. AWG $8 . . .4: 39.8 \mathrm{in} \cdot \mathrm{b}$.	
Highest supply or utilization voltage ($U_{\max }$)	AC	1-pole, 1+N	253 V AC	Screwdriver		No. 2 Pozidrive	
		2-pole, 3-pole, $3+N$	440 V AC	Mounting		DIN rail (EN 60715, 35mm) with fast clip	
	DC \star	1 -pole	48 V DC	Mounting position		Any	
		2-pole	96 V DC	Supply		Optional	
Min. operating voltage			$12 \mathrm{VaC}, 12 \mathrm{~V}$ DC	Approximate Dimensions and Weight			
Rated ultimate short-circuit breaking capacity ($I_{\text {cu }}$)			15 kA	Pole dimension (HxDxW)		$88 \times 69 \times 17.5 \mathrm{~mm}$	
Rated service short-circuit breaking capacity ($I_{\text {CS }}$)			≤ 40 A: 11.25 kA	Pole weight		115 g (4.1 oz.)	
			$>40 \mathrm{~A}: 7.5 \mathrm{kA}$	Combination with Auxiliary Elements			
Rated impulse withstand voltage Uimp. (1.2/50 $/ \mathrm{s}$)			$\begin{gathered} 4 \mathrm{kV} \\ \text { (test voltage 6.2kV at sea level, } 5 \mathrm{kV} \\ \text { at 2,000m) } \end{gathered}$	Auxiliary contact		Yes	
			Signal contact		Yes		
Dielectric test voltage				2 kV	Shunt trip		Yes
			(50/60Hz, 1 min.)	- $35 \mathrm{~mm}^{2}$ self-declared, not included in IEC/EN approval. Δ Refer to the ambient temperature derating tables. \ddagger Wires must be of like size and stranding. Up to two wires per terminal slot.			
Reference temperature for tripping characteristics			$30^{\circ} \mathrm{C}$				
Electrical endurance 1 cycle ($2 \mathrm{~s}-0 \mathrm{~N}, 13 \mathrm{~s}-\mathrm{OFF}, I_{\mathrm{n}} \leq 32 \mathrm{~A}$), 1 cycle (2s - ON, 28s - OFF, $I_{n}>32 \mathrm{~A}$)			$I_{\mathrm{n}}<30 \mathrm{~A}: 20,000$ ops (AC)				
			$I_{\mathrm{n}} \geq 30 \mathrm{~A}: 10,000$ ops. (AC)				
			1,000 ops. (DC)				

Power Loss Due to Current

Rated Current [A]	Power Loss Per Pole [W]	Rated Current [A]	Power Loss Per Pole [W]
0.5	1.4	13	2.3
1	1.4	15	2.4
2	1.8	16	2.5
3	1.6	20	2.5
4	1.8	25	3.2
5	1.9	30	3.5
6	2.0	32	3.7
7	1.1	40	4.5
8	1.5	50	4.5
10	2.1	63	5.4

Zero-stack Derating

The installation of several miniature circuit breaker side by side with rated current on all poles requires a correction factor to the rated current (not required if spacers are used).	
No. of Adjacent Devices	Factor
1	1
2,3	0.9
4,5	0.8
≥ 6	0.75

Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

Ambient Temperature Derating

Note: Application below $0^{\circ} \mathrm{C}$ is for non-condensing atmosphere. Care should be taken for applications below $0^{\circ} \mathrm{C}$. These devices are not certified to operate correctly in the presence of ice.

1492-SP
UL Derating

RP200	Ambient T	ature (
$\ln (\mathrm{A})$	-40	-30	-20	-10	0	10	20	30	40	50	60	70
0.5	0.65	0.63	0.61	0.59	0.57	0.56	0.54	0.52	0.5	0.48	0.46	0.44
1	1.30	1.26	1.22	1.19	1.15	1.11	1.07	1.04	1	0.96	0.93	0.89
2	2.60	2.52	2.44	2.37	2.30	2.22	2.15	2.07	2	1.93	1.85	1.78
3	3.89	3.78	3.67	3.56	3.44	3.33	3.22	3.11	3	2.89	2.78	2.67
4	5.19	5.04	4.89	4.74	4.59	4.44	4.30	4.15	4	3.85	3.70	3.56
5	6.50	6.31	6.13	5.94	5.75	5.56	5.38	5.19	5	4.81	4.63	4.44
6	7.77	7.55	7.33	7.11	6.89	6.67	6.44	6.22	6	5.78	5.56	5.33
7	9.10	8.84	8.58	8.31	8.05	7.79	7.53	7.26	7	6.74	6.48	6.21
8	10.36	10.07	9.78	9.48	9.18	8.89	8.59	8.30	8	7.70	7.41	7.11
10	13.00	12.60	12.20	11.90	11.50	11.10	10.70	10.40	10	9.60	9.30	8.90
13	16.90	16.40	15.90	15.40	14.90	14.40	14.00	13.50	13	12.50	12.00	11.60
15	19.50	18.94	18.38	17.81	17.25	16.69	16.13	15.56	15	14.44	13.88	13.31
16	20.60	20.10	19.60	19.00	18.40	17.80	17.20	16.60	16	15.40	14.80	14.20
20	26.00	25.20	24.40	23.70	23.00	22.20	21.50	20.70	20	19.30	18.50	17.80
25	32.40	31.50	30.60	29.60	28.70	27.80	26.90	25.90	25	24.10	23.20	22.20
30	39.00	37.88	36.75	35.63	34.50	33.38	32.25	31.13	30	28.88	27.75	26.63
32	41.50	40.30	39.10	37.90	36.70	35.60	34.40	33.20	32	30.80	29.60	28.40
40	51.90	50.40	48.90	47.40	45.90	44.40	43.00	41.50	40	38.50	37.00	35.60
50	64.90	63.00	61.10	59.30	57.40	55.60	53.70	51.90	50	48.20	46.30	44.50
63	81.60	79.30	77.00	74.70	72.30	70.00	67.70	65.30	63	60.70	58.30	56.00

1492-SP
IEC Derating
Reference Temp: $30^{\circ} \mathrm{C}$

RP200	Ambient T	ature (${ }^{\circ}$										
$\ln (\mathrm{A})$	-40	-30	-20	-10	0	10	20	30	40	50	60	70
0.5	0.63	0.61	0.59	0.57	0.56	0.54	0.52	0.5	0.48	0.46	0.44	0.43
1	1.26	1.22	1.19	1.15	1.11	1.07	1.04	1	0.96	0.93	0.89	0.85
2	2.52	2.44	2.37	2.30	2.22	2.15	2.07	2	1.93	1.85	1.78	1.70
3	3.78	3.67	3.56	3.44	3.33	3.22	3.11	3	2.89	2.78	2.67	2.56
4	5.04	4.89	4.74	4.59	4.44	4.30	4.15	4	3.85	3.70	3.56	3.41
5	6.31	6.13	5.94	5.75	5.56	5.38	5.19	5	4.81	4.63	4.44	4.25
6	7.55	7.33	7.11	6.89	6.67	6.44	6.22	6	5.78	5.56	5.33	5.11
7	8.84	8.58	8.31	8.05	7.79	7.53	7.26	7	6.74	6.48	6.21	5.95
8	10.07	9.78	9.48	9.18	8.89	8.59	8.30	8	7.70	7.41	7.11	6.82
10	12.60	12.20	11.90	11.50	11.10	10.70	10.40	10	9.60	9.30	8.90	8.50
13	16.40	15.90	15.40	14.90	14.40	14.00	13.50	13	12.50	12.00	11.60	11.10
15	18.94	18.38	17.81	17.25	16.69	16.13	15.56	15	14.44	13.88	13.31	12.75
16	20.10	19.60	19.00	18.40	17.80	17.20	16.60	16	15.40	14.80	14.20	13.60
20	25.20	24.40	23.70	23.00	22.20	21.50	20.70	20	19.30	18.50	17.80	17.00
25	31.50	30.60	29.60	28.70	27.80	26.90	25.90	25	24.10	23.20	22.20	21.30
30	37.88	36.75	35.63	34.50	33.38	32.25	31.13	30	28.88	27.75	26.63	25.50
32	40.30	39.10	37.90	36.70	35.60	34.40	33.20	32	30.80	29.60	28.40	27.30
40	50.40	48.90	47.40	45.90	44.40	43.00	41.50	40	38.50	37.00	35.60	34.10
50	63.00	61.10	59.30	57.40	55.60	53.70	51.90	50	48.20	46.30	44.50	42.60
63	79.30	77.00	74.70	72.30	70.00	67.70	65.30	63	60.70	58.30	56.00	53.70

Tripping Characteristics

B and C Curve-230/400V AC Let-through Energy

Tripping Characteristics

B and C Curve - 230/400V AC Let-through Energy

Tripping Characteristics

D Curve-230/400V AC Let-through Energy

Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

189-AST1 and 189-AST2

189-ASCR3

189-AR3

Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

189-AR11, 189-AR02, 189-AR20

189-AL11, 189-AL02, and 189-AL20

189-AB01 and 189-AB10

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1-Phase Bus Bars

1492-A1B8

1-Phase Bus Bars, with Auxiliary Contact

1492-A1B1H

1492-A1B8H

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

2-Phase Bus Bars

2-Phase Bus Bars, with Auxiliary Contact

1492-A2B1H

1492-A2B8H

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters. Dimensions are not intended for manufacturing purposes.

3-Phase Bus Bars

1492-A3B1

1492-A3B8

3-Phase Bus Bars, with Auxiliary Contact

1492-A3B1H

Bus Bar Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters. Dimensions are not intended for manufacturing purposes.

1492-AAT1S

1492-AME

1492-D Specifications

Electrical Ratings		
Poles		1,2
Tripping characteristics		C
Rated current (I_{n})		0.5... 63 A
Rated frequency (f)		0 Hz (DC only)
Rated insulation voltage U_{i} per IEC/EN 60664-1		250 V AC (phase to ground), 440V AC (phase to phase)
Overvoltage category		III
Pollution degree		3
Data per UL/CSA		
Rated voltage	1-pole	250 V DC
	2-pole	500 V DC
Rated interrupting capacity per UL 1077		10 kA
Application		Supplementary Protector for DC application use; application codes: TCO; OLO 250V DC, SC: 10kA; U1 250V DC; FW0
Reference temperature for tripping characteristics		$25^{\circ} \mathrm{C}$
Electrical endurance		6,000 ops
Data per IEC/EN 60947-2		
Rated operational voltage (U_{e})	1-pole	220 V DC
	2-pole	440 V DC
Highest supply or utilization voltage ($U_{\max }$)	1-pole	250 V DC
	2-pole	500 V DC
Min. operating voltage		12 V DC
Rated ultimate short-circuit breaking capacity$\underline{\left(I_{\mathrm{cu}}\right)}$		10 kA
Rated service short-circuit breaking capacity$\left(I_{C S}\right)$		10 kA
Rated impulse withstand voltage Uimp. (1.2/50 $\mu \mathrm{s}$)		$\begin{aligned} & 4 \mathrm{kV} \\ & \text { (test voltage 6.2kV at sea level, } 5 \mathrm{kV} \text { at } \\ & 2,000 \mathrm{~m} \text {) } \end{aligned}$
Dielectric test voltage		$\begin{gathered} 2 \mathrm{kV} \\ (50 / 60 \mathrm{~Hz}, 1 \mathrm{~min} .) \end{gathered}$
Reference temperature for tripping characteristics		$55^{\circ} \mathrm{C}$
Electrical endurance 1 cycle (2 s - $0 \mathrm{~N}, 13 \mathrm{~s}-0 \mathrm{OF}, I_{\mathrm{n}} \leq 32 \mathrm{~A}$), 1 cycle (2s - 0N, 28s - OFF, $I_{\mathrm{n}}>32 \mathrm{~A}$)		1,500 ops.

Mechanical Data	
Housing	Insulation group II, RAL 7035
Indicator window	red ON/green OFF
Protection degree per EN 60529	IP20, IP40 in enclosure with cover
Mechanical endurance	20,000 operations
Shock resistance per IEC/EN 60068-2-27	$25 \mathrm{~g}-2$ shocks - 13 ms
Vibration resistance per IEC/EN 60068-2-6	$5 \mathrm{~g}-20$ cycles at $5 . . .150 \ldots . .5 \mathrm{~Hz}$ with load 0.8 ln
Environmental	
Environmental conditions (damp heat) per IEC/EN 60068-2-30	28 cycles with $55^{\circ} \mathrm{C} / 90-96 \%$ and $25^{\circ} \mathrm{C} / 95-100 \%$
Ambient temperature Δ	$-25 \ldots+55^{\circ} \mathrm{C}$
Storage temperature	$-40 \ldots+70^{\circ} \mathrm{C}$
Installation	
Terminal	Dual terminal
Cross-section of wire - solid, stranded (front/back terminal slot)	$35 / 35 \mathrm{~mm}^{2}$
	18...4/18...10 AWG
Cross-section of wire - flexible (front/back terminal slot)	25/10 mm ${ }^{2}$
Multi-wire rating per UL, CSA	1 wire, 18... 4 AWG
	2-4 wires $\ddagger, 18 \ldots 10$ AWG
Cross-section of bus bars (back terminal slot)	$10 \mathrm{~mm}^{2}$
Tightening torque	$2.8 \mathrm{~N} \cdot \mathrm{~m}$
	AWG 18...16: $13.3 \mathrm{in} \cdot \mathrm{b}$. AWG 14...10:17.7 in•lb. AWG 8...4: $39.8 \mathrm{in} \cdot \mathrm{lb}$.
Screwdriver	No. 2 Pozidrive
Mounting	DIN rail (EN 60715, 35mm) with fast clip
Mounting position	Any
Supply	Note polarity of device
Approximate Dimensions and Weight	
Pole dimension ($\mathrm{H} \times \mathrm{D} \times \mathrm{W}$)	$88 \times 69 \times 17.5 \mathrm{~mm}$
Pole weight	125 g (4.5 oz.)
Combination with Auxiliary Elements	
Auxiliary contact	Yes
Signal contact	Yes
Shunt trip	Yes

- $35 \mathrm{~mm}^{2}$ self-declared, not included in IEC/EN approval.
Δ Refer to the ambient temperature derating tables.
\ddagger Wires must be of like size and stranding. Up to two wires per terminal slot.

Power Loss Due to Current

Rated Current [A]	Power Loss Per Pole [W]	Rated Current [A]	Power Loss Per Pole [W]
0.5	1.4	13	2.3
1	1.4	15	2.4
2	1.8	16	2.5
3	1.6	20	2.5
4	1.8	25	3.2
5	1.9	30	3.5
6	2.0	32	3.7
7	1.1	40	4.5
8	1.5	50	4.5
10	2.1	63	5.4

Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1-Pole

2-Pole

Zero-stack Derating

The installation of several miniature circuit breaker side by side with rated current on all poles requires a correction factor to the rated current (not required if spacers are used).	
No. of Adjacent Devices	Factor
1	1
2,3	0.9
4,5	0.8
≥ 6	0.75

Ambient Temperature Derating

Note: Application below $0^{\circ} \mathrm{C}$ is for non-condensing atmosphere. Care should be taken for applications below $0^{\circ} \mathrm{C}$. These devices are not certified to operate correctly in the presence of ice.

Bulletin 1492-D
Temperature Derating, UL
Reference temperature $=40^{\circ} \mathrm{C}$

Current	Ambient temperature (${ }^{\circ} \mathrm{C}$)									
Rating (A)	-25	-20	-10	0	10	20	30	40	50	55
0.5	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5
1	1.2	1.2	1.2	1.1	1.1	1.1	1.0	1	1.0	1.0
2	2.4	2.4	2.3	2.2	2.2	2.1	2.1	2	1.9	1.9
3	3.6	3.5	3.5	3.4	3.3	3.2	3.1	3	2.9	2.9
4	4.8	4.7	4.6	4.5	4.4	4.2	4.1	4	3.9	3.8
6	7.2	7.1	6.9	6.7	6.5	6.4	6.2	6	5.8	5.7
8	9.6	9.4	9.2	9.0	8.7	8.5	8.2	8	7.8	7.6
10	12.0	11.8	11.5	11.2	10.9	10.6	10.3	10	9.7	9.6
13	15.5	15.3	15.0	14.6	14.2	13.8	13.4	13	12.6	12.4
16	19.1	18.9	18.4	17.9	17.4	17.0	16.5	16	15.5	15.3
20	23.9	23.6	23.0	22.4	21.8	21.2	20.6	20	19.4	19.1
25	29.9	29.5	28.8	28.0	27.3	26.5	25.8	25	24.3	23.9
30	35.9	35.4	34.5	33.6	32.7	31.8	30.9	30	29.1	28.7
32	38.2	37.8	36.8	35.8	34.9	33.9	33.0	32	31.0	30.6
40	47.8	47.2	46.0	44.8	43.6	42.4	41.2	40	38.8	38.2
50	59.8	59.0	57.5	56.0	54.5	53.0	51.5	50	48.5	47.8
63	75.3	74.3	72.5	70.6	68.7	66.8	64.9	63	61.1	60.2

Bulletin 1492-D
Temperature Derating, IEC
Reference temperature $=30^{\circ} \mathrm{C}$

Current Rating (A)	Ambient temperature $\left({ }^{\circ} \mathbf{C}\right)$											
	$\mathbf{- 2 5}$	$\mathbf{- 2 0}$	$\mathbf{- 1 0}$	$\mathbf{0}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{5 5}$		
	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
$\mathbf{1}$	1.2	1.2	1.1	1.1	1.1	1.0	1	1.0	0.9	0.9		
$\mathbf{2}$	2.3	2.3	2.2	2.2	2.1	2.1	2	1.9	1.9	1.9		
$\mathbf{3}$	3.5	3.5	3.4	3.3	3.2	3.1	3	2.9	2.8	2.8		
$\mathbf{4}$	4.7	4.6	4.5	4.4	4.2	4.1	4	3.9	3.8	3.7		
$\mathbf{6}$	7.0	6.9	6.7	6.5	6.4	6.2	6	5.8	5.6	5.6		
$\mathbf{8}$	9.3	9.2	9.0	8.7	8.5	8.2	8	7.8	7.5	7.4		
$\mathbf{1 0}$	11.7	11.5	11.2	10.9	10.6	10.3	10	9.7	9.4	9.3		
$\mathbf{1 3}$	15.1	15.0	14.6	14.2	13.8	13.4	13	12.6	12.2	12.0		
$\mathbf{1 6}$	18.6	18.4	17.9	17.4	17.0	16.5	16	15.5	15.0	14.8		
$\mathbf{2 0}$	23.3	23.0	22.4	21.8	21.2	20.6	20	19.4	18.8	18.5		
$\mathbf{2 5}$	29.1	28.8	28.0	27.3	26.5	25.8	25	24.3	23.5	23.1		
$\mathbf{3 0}$	35.0	34.5	33.6	32.7	31.8	30.9	30	29.1	28.2	27.8		
$\mathbf{3 2}$	37.3	36.8	35.8	34.9	33.9	33.0	32	31.0	30.1	29.6		
$\mathbf{4 0}$	46.6	46.0	44.8	43.6	42.4	41.2	40	38.8	37.6	37.0		
$\mathbf{5 0}$	58.3	57.5	56.0	54.5	53.0	51.5	50	48.5	47.0	46.3		
$\mathbf{6 3}$	73.4	72.5	70.6	68.7	66.8	64.9	63	61.1	59.2	58.3		

Tripping Characteristics

c Curve

Circuit Breaker Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

189-ASCR3

189-AR3

189-AST1 and 189-AST2

189-AB01 and 189-AB10

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters. Dimensions are not intended for manufacturing purposes.

1-Phase Bus Bars

1-Phase Bus Bars, with Auxiliary Contact

1492-A1B8H

2-Phase Bus Bars

2-Phase Bus Bars, with Auxiliary Contact

188 Specifications

General Data	
Poles	1, 2, 3, 4, 1+N, 3+N
Tripping characteristics	B, C, D
Rated current (I_{n})	$0.5 \ldots 63 \mathrm{~A}$
Rated frequency (f)	$50 / 60 \mathrm{~Hz}$
Rated insulation voltage U_{i} per IEC/EN 60664-1	250 V AC (phase to ground), 440V AC (phase to phase)
Overvoltage category	III
Pollution degree	2

Data per IEC/EN 60898-1			
Rated operational voltage (U_{e})		1-pole	230/400V AC
		1-pole +N	230 VAC
		2-, 3-, 4-pole 3-pole +N	400V AC
Highest supply or utilization voltage $\left(U_{\max }\right)$	AC	1-pole	253/440V AC
		1-pole+N	253 V AC
		2-, 3-, 4-, 3-pole+N	440 V AC
	$D C \star$	1-pole	48 V DC
		2-pole	96 V DC
Min. operating voltage			$12 \mathrm{VAC}, 12 \mathrm{~V}$ DC
Rated short-circuit capacity$\left(I_{\mathrm{cn}}\right)$		188-J	10 kA
		188-K	6 kA
Energy limiting class (B, C up to 40 A)			3
Rated impulse withstand voltage $\mathrm{U}_{\text {imp. }}$. ${ }^{(1.2 / 50 \mu \mathrm{~s})}$			4 kV (test voltage 6.2 kV at sea level, 5 kV at $2,000 \mathrm{~m}$)
Dielectric test voltage			2 kV ($50 / 60 \mathrm{~Hz}, 1$ min.)
Reference temperature for tripping characteristics			B, C, D: $30^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Electrical endurance } \\ & 1 \text { cycle }\left(2 s-0 N, 13 s-0 F F, I_{n} \leq 32 \mathrm{~A}\right) \text {, } \\ & 1 \text { cycle }\left(2 s-0 \mathrm{~N}, 28 \mathrm{~s}-0 \mathrm{OF}, I_{\mathrm{n}}>32 \mathrm{~A}\right) \end{aligned}$			$\begin{gathered} I_{\mathrm{n}}<30 \mathrm{~A}: 20,000 \text { ops (AC) } \\ I_{\mathrm{n}} \geq 30 \mathrm{~A}: 10,000 \text { ops. (AC); ; } \\ 1,000 \text { ops. (DC); } \end{gathered}$

\star IEC DC ratings self-declared.

Power Loss Due to Current

Rated Current [A]	Power Loss Per Pole [W]	Rated Current [A]	Power Loss Per Pole [W]	
0.5	1.4		13	2.3
1	1.4		16	2.5
2	1.8		20	2.5
3	1.5		25	3.2
4	1.8		32	3.7
6	2.0	40	4.8	
8	1.5		50	4.5
10	2.1		63	5.2

Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

Ambient Temperature Derating

Note: Application below $0^{\circ} \mathrm{C}$ is for non-condensing atmosphere. Care should be taken for applications below $0^{\circ} \mathrm{C}$. These devices are not certified to operate correctly in the presence of ice.

Bulletin 188-J
Temperature Derating, IEC
Reference temperature $=30^{\circ} \mathrm{C}$

Current Rating [A]	Ambient temperature (${ }^{\circ} \mathrm{C}$)									
	-25	-20	-10	0	10	20	30	40	50	55
0.5	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5
1	1.2	1.2	1.1	1.1	1.1	1.0	1.0	1.0	0.9	0.9
2	2.3	2.3	2.2	2.2	2.1	2.1	2.0	1.9	1.9	1.9
3	3.5	3.5	3.4	3.3	3.2	3.1	3.0	2.9	2.8	2.8
4	4.7	4.6	4.5	4.4	4.2	4.1	4.0	3.9	3.8	3.7
6	7.0	6.9	6.7	6.5	6.4	6.2	6.0	5.8	5.6	5.6
8	9.3	9.2	9.0	8.7	8.5	8.2	8.0	7.8	7.5	7.4
10	11.7	11.5	11.2	10.9	10.6	10.3	10	9.7	9.4	9.3
13	15.1	15.0	14.6	14.2	13.8	13.4	13	12.6	12.2	12.0
16	18.6	18.4	17.9	17.4	17.0	16.5	16	15.5	15.0	14.8
20	23.3	23.0	22.4	21.8	21.2	20.6	20	19.4	18.8	18.5
25	29.1	28.8	28.0	27.3	26.5	25.8	25	24.3	23.5	23.1
32	37.3	36.8	35.8	34.9	33.9	33.0	32	31.0	30.1	29.6
40	46.6	46.0	44.8	43.6	42.4	41.2	40	38.8	37.6	37.0
50	58.3	57.5	56.0	54.5	53.0	51.5	50	48.5	47.0	46.3
63	73.4	72.5	70.6	68.7	66.8	64.9	63	61.1	59.2	58.3

Tripping Characteristics

B Curve

B and C Curve - 230/400V AC Let -through Energy

Tripping Characteristics

C Curve

B and C Curve-230/400V AC Let-through Energy

Tripping Characteristics

D Curve

D Curve-230/400V AC Let-through Energy

Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes

189-AST1 and 189-AST2

189-ASCR3

189-AR3

Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

189-AR11, 189-AR02, 189-AR20

189-AL11, 189-AL02, and 189-AL20

189-AB01 and 189-AB10

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1-Phase Bus Bars

189-CL1

189-CL112

189-CL106
189-CL102

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1-Phase Bus Bars, with Auxiliary Contact

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

2-Phase Bus Bars

189-CL206
189-CL204

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes

2-Phase Bus Bars, with Auxiliary Contact

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

3-Phase Bus Bars

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

3-Phase Bus Bars, with Auxiliary Contact

189-CL3H06

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes

4-Phase Bus Bars

2- and 4-Phase Bus Bars for connection to 1492-RCD

Bus Bar Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters. Dimensions are not intended for manufacturing purposes.

189-CLT50D

189-CL4EC
189-CLPS

1492-RCD Specifications

General Data		
Poles		2,4
Rated current $I_{\text {n }}$		25, 40, 63, 80 A
Rated sensitivity $/ \Delta n$	2-pole	30, 100, 300 mA
	4-pole	$30,100,300,500 \mathrm{~mA}$
Electrical Ratings		
Rated short-circuit strength		10 kA with $63 \mathrm{AgG} / \mathrm{gL}$ back-up fuse, 10 kA with $80 \mathrm{AgG} / \mathrm{gL}$ back-up fuse for 80 A device
Rated operational voltage U_{e} per IEC/EN		230/400V AC
Rated voltage U_{e} per UL		480Y/277V AC
Max. operating voltage of circuit test		254 V AC
Min. operating voltage of circuit test		110 V
Rated frequency		50/60 Hz
Rated conditional short-circuit		10 kA (SCPD - fuse gG 100 A)
Rated residual breaking capacity		1 kA
Rated impulse withstand voltage$\mathrm{u}_{\mathrm{imp}}(1.2 / 50 \mu \mathrm{~s})$		4 kV
Dielectric test voltage at ind. frea. for 1 min.		2.5 kV
Electrical endurance		10,000 operations
Mechanical		
Indicator window		Red ON/green OFF
Protection degree	Housing	IP4X
	Terminals	IP2X
Environmental		
Ambient temperature(with daily average $+35^{\circ} \mathrm{C}$)		$-25 . . .+55^{\circ} \mathrm{C}$
Storage temperature		$-40 . . .+70^{\circ} \mathrm{C}$
Mechanical endurance		20,000 operations
Installation		
Terminal type		Dual terminal
Cross-section of wire solid, stranded, flexible (front/back terminal slot)	25...63 A	$25 / 25 \mathrm{~mm}^{2}$
		18... 4 AWG
	80 A	$35 / 35 \mathrm{~mm}^{2}$
		18... 2 AWG
Cross-section of bus bars (front/back terminal slot)	$25 . .63 \mathrm{~A}$	$10 / 10 \mathrm{~mm}^{2}$
	80 A	$16 / 16 \mathrm{~mm}^{2}$
Tightening torque	25...63 A	$2.8 \mathrm{~N} \cdot \mathrm{~m}$
		$25 \mathrm{in} \cdot \mathrm{lb}$
	80 A	$4.8 \mathrm{~N} \cdot \mathrm{~m}$
		$43 \mathrm{in} \cdot \mathrm{lb}$
Mounting		DIN Rail EN 60715 (35 mm) with fast clip device
Supply		Optional

Approximate Dimensions and Weight			
Dimensions (H x D xW)			
2-pole			
	4-pole		$88 \times 67 \times 35 \mathrm{~mm}$
Cuxiliary contact			
Combination with Auxiliary Elements			
2-pole		$88 \times 67 \times 70 \mathrm{~mm}$	

Power Loss Due to Current

Rated Current [A]	Power Loss [W]	
	2-pole	4-pole
40	1	1.3
63	2.4	3.2
80	3.2	4.4
8.8	33.3	

Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

2-, 4-Pole

2-Pole

4-Pole

Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

189-ASCR3

189-AR3

189-AR11, 189-AR02, 189-AR20

Bus Bar Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

2- and 4-Phase Bus Bars

189-CL408

Bus Bar Accessory Approximate Dimensions

Note: Dimensions are shown in millimeters. Dimensions are not intended for manufacturing purposes.

189-CLT50D

189-CL3EC

189-CL4EC
189-CLPS

1692 Specifications

Electrical Ratings	
Voltage	24V DC (18...30V DC)
Output current	1 A... 12 A, select devices - NEC Class 2
Output ratings	Isolated safety extra-low voltage (SELV)
Environmental	
Operating temperature	$-25 . . .+70^{\circ} \mathrm{C}\left(-13 . . .158^{\circ} \mathrm{F}\right)$ (non-condensing)
Storage temperature	$-40^{\circ} \mathrm{C}$... $+85^{\circ} \mathrm{C}\left(-40 \ldots . .185^{\circ} \mathrm{F}\right)$
Humidity	5...95\% (non-condensing)
Degree of pollution	2
Construction	
Terminal wire gauge	24...10 AWG (0.2...4mm²)
Termination type	Screw
Dimensions in. (mm)	$1.77 \times 2.95 \times 3.58(45 \times 75 \times 91)$
Weight lb. (g)	0.26 (120)

Approximate Dimensions

Note: Dimensions are shown in millimeters (inches). Dimensions are not intended for manufacturing purposes.

1492-MC Specifications

Electrical Ratings	
Rated voltage	See rated voltage tables
Continuous current rating @ $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$	$10,15,20,25,30,35,40,45,50,55,60,70,8090,100 \mathrm{~A}$
Rated short circuit capability	See interrupting capacity tables
Environmental	
Operating temperature	$0 . . .60^{\circ} \mathrm{C}\left(32 . .140^{\circ} \mathrm{F}\right)$ (non-condensing)
Shipment and short term storage limits	$-40^{\circ} \mathrm{C} . . .80^{\circ} \mathrm{C}\left(-40 . .176{ }^{\circ} \mathrm{F}\right)$
Degree of protection	$1 / 2$ in. wide circuit breakers are finger safe from front per IEC. Terminal covers available for 1 in. wide circuit breaker.
Mechanical	
Mounting	DIN rail
Wire size	See terminal table
Terminal torque	
Recommended wire strip length	

1492-MCA/MCB Thermal Magnetic Rated Voltage and Interrupting Capacity

	Rated Voltage		Interrupting Capacity (rms Symmetrical Amperes)	
Cat. No.	[V AC]	[V DC] \star	AC Rating [kA]	DC Rating [kA]
1492-MCAA1xx	120/240	24, 48, 62.5	10	3
1492-MCAA2xx				
1492-MCAA2Hxx	240	24, 48, 62.5		3
1492-MCAA3xx				
1492-MCBA1xx	120/240	-		-
1492-MCBA2xx				
1492-MCBA2Hxx	240	-		-
1492-MCBA3xx				

\star Rating as supplementary protector.
1492-MCE/MCG Ground Sensing Rated Voltage and Interrupting Capacity

	Rated Voltage	Interrupting Capacity (rms Symmetrical Amperes)
Cat. No.	[V AC]	AC Rating [kA]
1492-MCEA1xx	120	
1492-MCEA2xx	$120 / 240 \ddagger$	10
1492-MCGAT1xx	120	10
1492-MCGAT2xx	$120 / 240 \ddagger$	

[^0]
Application Information

Selection of a Bul. 1492-MC circuit breaker with appropriate circuit protection includes consideration of:

- Circuit voltage
- Circuit frequency
- Available short circuit current
- Continuous current rating
- Application considerations
- Special operating conditions

The following discussion is based upon National Electric Code and UL requirements. Similar considerations are appropriate for Canadian applications.

Circuit Voltage

Bul. 1492-MC circuit breakers are rated by voltage class. Applications should not exceed the listed voltage range (see Table 1).

Circuit Frequency

Bul. 1492-MC circuit breakers may be applied to frequencies from DC up to 60 Hz without derating. For applications above 60 ... 400 Hz , contact Rockwell Automation with specific application information for the derating of the circuit breakers.

Available Short Circuit Current

Bul. 1492-MC circuit breakers should only be applied in those applications in which the available short-circuit (or fault) current is less than or equal to the interrupting rating shown in the Voltage and Interrupting Ratings table.

Continuous Current Rating

Bul. 1492-MC circuit breakers are rated in RMS amperes at a $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ ambient temperature per UL 489 (CSA 22.2 No. 5.1). This temperature is the ambient temperature external to an industrial enclosure. If a circuit breaker is applied in a temperature that exceeds the $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ ambient, then the circuit breaker should be derated. Contact your local Rockwell Automation sales office or Allen-Bradley distributor for derating information.

Application Considerations

The selection of a specific ampere rating for a specific application is dependent on the type of load and duty cycle and is governed by the National Electric Code (Canadian Electric Code) and UL/CSA. In general the codes require that overcurrent protection is at the current supply and at points where wire sizes are reduced. In addition the codes state that conductors be protected according to their current carrying capacity. There are specific situations that require application
consideration, such as motor circuit, and guidelines for the selection for transformer protection.

Bulletin 1492-MC circuit breakers are "non-100\% rated" as defined by UL 489 Part 7.1.4.2. As such the circuit breaker's rating should be loaded to no more than 80%, if used with continuous loads.

Branch Circuits:

Bulletin 1492-MC circuit breakers may be used to protect branch circuits. A branch circuit is the wiring portion of a system extending beyond the final overcurrent device protecting the circuit.

Guidelines established in NEC, CEC, UL, and CSA should be used to determine the specific device. The examples on page , also apply to the 1492-MC devices.

Coordinated Overcurrent Protection

Where an orderly shutdown is required to minimize the hazards to personnel and equipment, a system of coordination based upon the faulted or overloaded circuit is isolated by selective operation of only the overcurrent protective device closest to the overcurrent condition.

The user should select devices that meet this requirement.
References: NEC 240.12. Also see CEC.

Self Test Capability (GFCI only)

Per UL 943 (5.16 / 6.30), GFCI devices have built-in self test capability. The self test is an internal, automated function running in the background. For more information please refer to UL 943 standard.

Tripping Characteristics

Time Current Curve - 1-Pole Circuit Breaker

Time Current Curve - 2-Pole Circuit Breakers

Tripping Characteristics

Time Current Curve - 3-Pole Circuit Breakers

Approximate Dimensions

Note: Dimensions are shown in inches (mm). Dimensions are not intended for manufacturing purposes.

1492-MCAA

1-, 2-, 3-Pole (3-Pole shown)

1492-MCBA

Approximate Dimensions

Note: Dimensions are shown in inches. Dimensions are not intended for manufacturing purposes.

1492-MCE/1492-MCG

1492-GH/-GS Specifications

	1492-GH	1492-GS		
	1-Pole	1-Pole	2-Pole	3-Pole
Ul/CSA		0.2...16 A	$5 \mathrm{kAC1}$ (2 kA C1 for 65V DC - 1-pole)	
	(Not to exceed 100 x rated A)	18...25 A	$2 \mathrm{kAC1}$	
IECIEN 60034 (8BE)		0.2.. 5 A	400 A	
IEC/EN60934 (BE)	-	6... 25 A	800 A	
Maximum voltage ratings	250 V AC $50 / 60 \mathrm{~Hz}$ 65V DC	480Y/277V AC 50/60 Hz 65 V DC		
Temperature range	$-40 \ldots+149^{\circ} \mathrm{F}\left(-40 \ldots+65^{\circ} \mathrm{C}\right)$ non-condensing			
Operating life	6000 operations @ rated current			
Housing material	Glass-filled Polyamide 6.6			
Shock	$25 \mathrm{G}, 11 \mathrm{~ms} \mathrm{duration}$			
Vibration	$5 \mathrm{G}(10 . . .500 \mathrm{~Hz})$			
Dielectric strength	1500 V AC	1600 V AC		
Insulation resistance	100 M ת @ 500V DC			
Terminal type	Tubular screw with self-lifiting box lug			
Wire size	\#22... 10 AWG			
Recommended wire strip length	0.44 in. (11.2 mm)	Main terminal - 0.51 in . 13 mm) aux terminal - 0.41 in . (10.4 mm)		
Terminal torque	1.3...1.4 N•m ($10 . . .12 \mathrm{lb} \cdot \mathrm{in}^{\text {a }}$)	$0.656 \mathrm{~N} \cdot \mathrm{~m}(5 \mathrm{lb} \cdot \mathrm{in})$		
N.O. auxiliary contact rating	-	1.0 A AC or DC (resistive load)		

Approximate Dimensions

Note: Dimensions are shown in inches (mm). Dimensions are not intended for manufacturing purposes.

	1492-GH	1492-GS		
	1-Pole	1-Pole	2-Pole	3-Pole
	$3.15 \mathrm{in} .(80 \mathrm{~mm})$	$3.15 \mathrm{in} .(80 \mathrm{~mm})$		
	$2.89 \mathrm{in} .(73.4 \mathrm{~mm})$	$3.48 \mathrm{in} .(88.5 \mathrm{~mm})$		
Width	$0.49 \mathrm{in} .(12.4 \mathrm{~mm})$	$0.49 \mathrm{in} .(12.5 \mathrm{~mm})$	$0.98 \mathrm{in} .(25 \mathrm{~mm})$	$1.47 \mathrm{in} .(37.5 \mathrm{~mm})$

Application Information

UL 1077, CSA C22.2 \#235

In North America, miniature circuit breakers are recognized as supplementary protectors and are intended for use as overcurrent protection within an appliance or other electrical equipment where branch circuit protection is already provided or not required. Internationally, these products are rated to IEC standards as circuit breakers for equipment (CBE).

Selection Information

High-density supplementary protector/miniature circuit breaker applications include, but are not limited to, the protection of test equipment, control instrumentation, solenoids, and power supplies. The wide range of current values and the use of a thermal magnetic trip system allows for a variety of applications where a very accurate and compact breaker is required.

To select a miniature circuit breaker, use the following procedure:

1. Determine the inrush correction factor from the following table.

Inrush Ratio Correction Table					
Inrush Ratio	$1: 1$ to $1: 4$	$1: 5$	$1: 6$	$1: 7$	$1: 8$
Factor	1.3	1.4	1.5	1.6	1.7

Note: For resistive loads use an inrush correction factor of 1.0.
2. Determine the temperature correction factor from the following table.

Ambient Temperature Correction Table							
Ambient Temperature	$\begin{gathered} 70^{\circ} \mathrm{F} \\ \left(21.1^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 100^{\circ} \mathrm{F} \\ \left(37.8^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 120^{\circ} \mathrm{F} \\ \left(48.9^{\circ} \mathrm{C}\right. \end{gathered}$	$\begin{aligned} & 140^{\circ} \mathrm{F} \\ & \left(60^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 160^{\circ} \mathrm{F} \\ \left(71.1^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 180^{\circ} \mathrm{F} \\ \left(82.2^{\circ} \mathrm{C}\right. \end{gathered}$	$\begin{gathered} 200^{\circ} \mathrm{F} \\ \left(93.3^{\circ} \mathrm{C}\right. \end{gathered}$
Factor	1.0	1.1	1.2	1.3	1.4	1.5	1.6

3. Determine the sealed current of the load being protected.
4. Multiply the sealed current by the two correction factors and select the closest higher ampere rating.

Example - For a solenoid with sealed current of 0.5 A , an inrush ratio of 1:8, and an ambient temperature of $+110^{\circ} \mathrm{F}$, $(0.5 \times 1.7 \times 1.15=0.9775)$, select the 1.0 A miniature circuit breaker. Tripping time of the miniature circuit breaker is determined from the table below. Divide the miniature circuit breaker value by the temperature correction factor from the Ambient Temperature Correction Table to determine the actual rated current referenced in the table below.

Tripping Times in Seconds at $70^{\circ} \mathbf{F}\left(21.1^{\circ} \mathrm{C}\right)$								
Percent Rated Current	100%	200%	300%	400%	500%	600%	1000%	2000\% Greater
Tripping Times (Seconds)	NoTrip	$10 \ldots 40$	$3 \ldots .18$	$1.5 \ldots 9$	$0.8 \ldots 6$	$\ldots .003$	0.009	Max.

Note: When several breakers are rail mounted adjacent to each other, the no-trip current will be 80% of rated current at $70^{\circ} \mathrm{F}\left(21.1^{\circ} \mathrm{C}\right)$.

Using selection tables, select Bulletin 1492-GH/GS that allows full load current nearest without exceeding application current. Also, check that inrush current is less than trip range of 6... 10 In .

Tripping Characteristics

Time Current Curve - 1492 -GH

Note: When several breakers are rail mounted adjacent to each other, the no-trip current will be 80% of rated current at $70^{\circ} \mathrm{F}$ ($21.1^{\circ} \mathrm{C}$).

Notes

1492-FB Specifications

\star Both wires must be same size

Approximate Dimensions

Note: Dimensions are shown in inches (mm). Dimensions are not intended for manufacturing purposes.

Dimension		For Midget Fuse 30 A	For Class CC Fuse 30 A	For Class J Fuse		
		30 A		60 A		
Height			$\begin{aligned} & 3.19 \mathrm{in} . \\ & (81 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 3.19 \mathrm{in} . \\ & (81 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 4.65 \mathrm{in} . \\ (118 \mathrm{~mm}) \end{gathered}$	4.65 in. (118 mm)
Depth		2.51 in. (64 mm)	2.51 in. (64 mm)	2.76 in. (70 mm)	$\begin{aligned} & 3.23 \mathrm{in} . \\ & (82 \mathrm{~mm}) \end{aligned}$	
	1-Pole	0.71 in. (18 mm)	0.71 in. (18 mm)	1.41 in. (36 mm)	$\begin{aligned} & 1.57 \mathrm{in} . \\ & (40 \mathrm{~mm}) \end{aligned}$	
Width	2-Pole	1.41 in . (36 mm)	1.41 in . (36 mm)	2.83 in. (72 mm)	$\begin{aligned} & 3.15 \mathrm{in} . \\ & (80 \mathrm{~mm}) \end{aligned}$	
	3-Pole	$\begin{aligned} & 2.13 \mathrm{in} . \\ & (54 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 2.13 \mathrm{in} . \\ & (54 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 4.25 \mathrm{in} . \\ (108 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4.72 \mathrm{in} . \\ (120 \mathrm{~mm}) \end{gathered}$	

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Allen-Bradley, Rockwell Software, Rockwell Automation, and LISTEN. THINK. SOLVE are trademarks of Rockwell Automation, Inc.
Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400
www.rockwellautomation.com

Power, Control and Information Solutions Headquarters
Americas: Rockwell Automation, 1201 South Second Strect, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: \ddagger These devices are for grounded neutral 240 V wye systems only.

